						R	EVISI	ONS										
LTR	DESCRIPTION									DA	TE (YI	R-MO-	DA)		APPR	OVED)	
А	Made correc	ctions in t	able I.	Editori	al cha	nges t	hrouh	out.			91-05-03			W. Heckman				
В	Change to \	/cc in par	agraph	1.4 an	d table	e I.						99-0)5-13		K. A	. Cotto	naim	
С	Added new						ıo code	2795	:1 1/16	ndo.)1-20					n
	corrections to Updated dra	to table I	for the	input h	igh cu	rrent a	and ga	in erro	r tests	3.		04-0	71-20		Raymond Monnin			
	TH	HE ORIG	SINAL	FIRST	PAG	E OF	THIS	DRA	WINC	S HAS	S BEE	N RE	EPLA(CED				
REV	TH	HE ORIG	SINAL	FIRST	PAG	E OF	THIS	DRA	WING	S HAS	S BEE	N RE	E PLA (CED	Ι			
	TI	HE ORIG	GINAL	FIRST	PAG	E OF	THIS	DRA	WINC	S HAS	S BEE	EN RE	EPLAG	CED				
SHEET	TH	HE ORIG	BINAL	FIRST	PAG	E OF	THIS	DRA	WINC	S HAS	S BEE	EN RE	EPLA(CED				
SHEET	Th	HE ORIG	SINAL	FIRST	PAG	E OF	THIS	DRA	WINC	S HAS	S BEE	N RE	EPLAC	CED				
SHEET REV SHEET			SINAL	FIRST	PAG	E OF	THIS	DRA	WINC	C C	S BEE	EN RE	EPLAC	CED C	C	C	C	(
SHEET REV SHEET REV STATU	S	RI		FIRST											C 11	C 12	C 13	
SHEET REV SHEET REV STATU OF SHEETS	S	RI SI	≣V	ED BY	C	C	C	C	C 5	C 6	C 7	C 8	C 9	C 10	11	12	13	
SHEET REV SHEET REV STATU OF SHEETS PMIC N/A STA	S	RI SH PR St	EV HEET	ED BY ncan	C 1	C	C	C	C 5	C 6	C 7 SE SI	C 8 UPPL	C 9	C	11 COL 43216	12 UMB	13	
SHEET REV SHEET REV STATU OF SHEETS PMIC N/A STA MICRO DR.	S	RI SH PR St CH Ro	EPARE eve Du	ED BY ncan D BY . Hebe	C 1	C	C	C 4	C 5	C 6	C 7 SE SI COL	C 8 UPPL UMBI p://wv	C 9 Y CE US, O	C 10 NTER	11 COL 43216 .mil	12 UMB	13 US	(1
MICRO DRA THIS DI AVA FOR U DEPA	INDARD OCIRCUIT AWING	RI SH PR St CH Ro AF W	EV HEET EPARE eve Du HECKEI bbert M	ED BY ncan D BY . Hebe	C 1	C 2	C 3	C 4	C 5	C 6	C 7 SE SI COLI	C 8 UPPL UMBU p://wv	C 9 Y CEUS, O	C 10	11 COL 43216 .mil	12 UMB	us BIT,	1

SHEET

1 OF

14

AMSC N/A

5962-E112-04

1. SCOPE

- 1.1 Scope. This drawing describes device requirements for class H hybrid microcircuits in accordance with MIL-PRF-38534.
- 1.2 PIN. The PIN shall be as shown in the following example:

1.2.1 Device type(s). The device type(s) identify the circuit function as follows:

Device typeGeneric numberCircuit function01HS1068, SP-2069A/D converter, 8-bit flash

1.2.2 <u>Case outline(s)</u>. The case outline(s) are as designated in MIL-STD-1835 and as follows:

Outline letter	Descriptive designator	<u>Terminals</u>	Package style
X	See figure 1	24	Dual-in-line

1.2.3 Lead finish. The lead finish shall be as specified in MIL-PRF-38534.

1.3 Absolute maximum ratings. 1/

Positive supply voltage range (V _{CC})	+0.5 V dc to +7.0 V dc
Negative supply voltage (VEE)	-7.0 V dc
Digital input voltage	+5.5 V dc
Analog input voltage	±5.5 V dc
Reference voltage	2.2 V dc
Applied output voltage	5.5 V dc
Power dissipation (T _C = +125°C)	3.0 W
Storage temperature range	-65°C to +150°C
Lead temperature (soldering, 10 seconds)	+300°C
Junction temperature (T _J)	+150°C
Thermal resistance, junction-to-case (Θ_{JC})	40°C/W

1.4 Recommended operating conditions.

Positive supply voltage range (V_{CC}) Negative supply voltage range (V_{EE}) Analog ground voltage range (V_{AGND}) Digital input high voltage (V_{IH}) Digital input low voltage (V_{IL}) Applied output voltage (V_{O}) R _{BOT} adjustment range (R_{ADJ}). Convert pulse width low (t_{PWL}) Convert pulse width high (t_{PWH}) Maximum clock frequency (f_{CLK})	+4.75 V dc to +5.25 V dc -4.9 V dc to -5.5 V dc -0.1 V dc to +0.1 V dc 2.0 V dc minimum 0.8 V dc maximum Vcc ±0.2 V 2/ 18 ns minimum 22 ns minimum 20 MHz minimum
Maximum clock frequency (f _{CLK})	20 MHz minimum -55°C to +125°C

Stresses above the absolute maximum ratings may cause permanent damage to the device. Extended operation at the maximum levels may degrade performance and affect reliability.

^{2/} Operation is possible down to $R_{BOT} = -1.1 \text{ V}$ with reduced dynamic performance.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-88776
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL C	SHEET 2

2. APPLICABLE DOCUMENTS

2.1 <u>Government specification, standards, and handbooks</u>. The following specification, standards, and handbooks form a part of this drawing to the extent specified herein. Unless otherwise specified, the issues of these documents are those listed in the issue of the Department of Defense Index of Specifications and Standards (DoDISS) and supplement thereto, cited in the solicitation.

SPECIFICATION

DEPARTMENT OF DEFENSE

MIL-PRF-38534 - Hybrid Microcircuits, General Specification for.

STANDARDS

DEPARTMENT OF DEFENSE

MIL-STD-883 - Test Method Standard Microcircuits.

MIL-STD-1835 - Interface Standard Electronic Component Case Outlines.

HANDBOOKS

DEPARTMENT OF DEFENSE

MIL-HDBK-103 - List of Standard Microcircuit Drawings.

MIL-HDBK-780 - Standard Microcircuit Drawings.

(Unless otherwise indicated, copies of the specification, standards, and handbook are available from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.).

2.2 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

3. REQUIREMENTS

- 3.1 <u>Item requirements</u>. The individual item performance requirements for device class H shall be in accordance with MIL-PRF-38534. Compliance with MIL-PRF-38534 may include the performance of all tests herein or as designated in the device manufacturer's Quality Management (QM) plan or as designated for the applicable device class. Therefore, the tests and inspections herein may not be performed for the applicable device class (see MIL-PRF-38534). Futhermore, the manufacturers may take exceptions or use alternate methods to the tests and inspections herein and not perform them. However, the performance requirements as defined in MIL-PRF-38534 shall be met for the applicable device class.
- 3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38534 and herein.
 - 3.2.1 Case outline(s). The case outline(s) shall be in accordance with 1.2.2 herein and figure 1.
 - 3.2.2 Terminal connections. The terminal connections shall be as specified on figure 2.
 - 3.2.3 <u>Block diagram(s)</u>. The block diagram(s) shall be as specified on figure 3.
 - 3.2.4 Output coding table(s). The output coding table(s) shall be as specified on figure 4.
 - 3.2.5 Timing diagram(s). The timing diagram(s) shall be as specified on figure 5.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-88776
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL C	SHEET 3

- 3.3 <u>Electrical performance characteristics</u>. Unless otherwise specified herein, the electrical performance characteristics are as specified in table I and shall apply over the full specified operating temperature range.
- 3.4 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in table II. The electrical tests for each subgroup are defined in table I.
- 3.5 <u>Marking of device(s)</u>. Marking of device(s) shall be in accordance with MIL-PRF-38534. The device shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's vendor similar PIN may also be marked.
- 3.6 <u>Data</u>. In addition to the general performance requirements of MIL-PRF-38534, the manufacturer of the device described herein shall maintain the electrical test data (variables format) from the initial quality conformance inspection group A lot sample, for each device type listed herein. Also, the data should include a summary of all parameters manually tested, and for those which, if any, are guaranteed. This data shall be maintained under document revision level control by the manufacturer and be made available to the preparing activity (DSCC-VA) upon request.
- 3.7 <u>Certificate of compliance</u>. A certificate of compliance shall be required from a manufacturer in order to supply to this drawing. The certificate of compliance (original copy) submitted to DSCC-VA shall affirm that the manufacturer's product meets the performance requirements of MIL-PRF-38534 and herein.
- 3.8 <u>Certificate of conformance</u>. A certificate of conformance as required in MIL-PRF-38534 shall be provided with each lot of microcircuits delivered to this drawing.

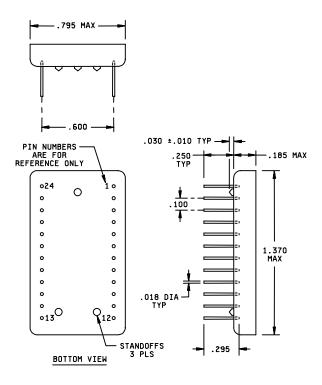
4. QUALITY ASSURANCE PROVISIONS

- 4.1 <u>Sampling and inspection</u>. Sampling and inspection procedures shall be in accordance with MIL-PRF-38534 or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein.
 - 4.2 Screening. Screening shall be in accordance with MIL-PRF-38534. The following additional criteria shall apply:
 - a. Burn-in test, method 1015 of MIL-STD-883.
 - (1) Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to either DSCC-VA or the acquiring activity upon request. Also, the test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015 of MIL-STD-883.
 - (2) T_A as specified in accordance with table I of method 1015 of MIL-STD-883.
 - b. Interim and final electrical test parameters shall be as specified in table II herein, except interim electrical parameter tests prior to burn-in are optional at the discretion of the manufacturer.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-88776
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL C	SHEET 4

		TABLE I. Electrical performance	characteristic	<u>s</u> .			
Test	Symbol	Conditions $ -55^{\circ}C \le T_{C} \le +125^{\circ}C \\ +4.75 \text{ V dc} \le V_{CC} \le +5.25 \text{ V dc} \\ -4.9 \text{ V dc} \le V_{EE} \le -5.5 \text{ V dc} \\ The expression of the exp$	Group A subgroups	Device type	Lin Min	nits Max	Unit
Resolution	RES	unless otherwise specified	1,2,3	01		8.0	Bits
Integral linearity error	ELI	DC, best straight line	1,2,3	01	-0.5	+0.5	LSB
mograf infoanty offor		Bo, boot diraignt into	2,3	_	-1.0	+1.0	202
Differential linearity error	E _{DI}	DC	1,2,3	01	-0.75	+0.75	LSB
Code size	CS		4,5,6	01	25	175	%
Full power bandwidth	FPBW	No spurious codes	4	01	7.0		MHz
			5,6		5.0		
Range amplifier 1/bandwidth	RABW		4,5,6	01	100		kHz
Range amplifier settling time	ts	One volt step at R _{BOT}	9,10,11	01		50	μs
Maximum conversion rate	f _S	V _{CC} = +4.75 V, V _{EE} = -4.9 V	9,10,11	01	20		MHz
Sampling time offset 1/	t _{STO}	V _{CC} = +4.75 V, V _{EE} = -4.9 V, See figure 5	9,10,11	01		10	ns
Digital output delay 1/	t _D	V _{CC} = +4.75 V, See figure 5	9,10,11	01	15	28	ns
CONV pulse width, low 1/	t _{PWL}	V _{CC} = +4.75 V	9,10,11	01	18		ns
CONV pulse width, high 1/	t _{PWH}	V _{CC} = +4.75 V	9,10,11	01	22		ns
Input low current	I _{IL}	NMINV, NLINV	1,2,3	01		-2.8	mA
		ŌĒ				-0.4	
		CONV				-0.8	
Input high current	I _{IH}	NMINV, NLINV	1,2,3	01	-1340	50	μΑ
. •		ŌĒ				20	•
		CONV				70	
Input low voltage 1/	V _{IL}		1,2,3	01		0.8	V
Input high voltage 1/	V _{IH}		1,2,3	01	2.0		V
Analog input resistance 1/	R _{IN}		4,5,6	01		1.0	kΩ
Output leakage current, logic low	I _{LOL}		1,2,3	01		-20	μΑ

See footnotes at end of table.


STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-88776
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL C	SHEET 5

	TAB	BLE I. Electrical performance chara	acteristics - Cc	ontinued.			
Test	Symbol	Conditions $ -55^{\circ}C \leq T_{C} \leq +125^{\circ}C \\ +4.75 \text{ V dc} \leq V_{CC} \leq +5.25 \text{ V dc} \\ -4.9 \text{ V dc} \leq V_{EE} \leq -5.5 \text{ V dc} \\ \text{unless otherwise specified} $	Group A subgroups	Device type	Lin Min	mits Max	Unit
Output leakage current, logic high	I _{LOH}	unless otherwise specified	1,2,3	01		20	μА
Output voltage low	V _{OL}	I _{OL} = 12 mA	1,2,3	01		0.4	V
Output voltage high	V _{OH}	I _{OH} = -1.0 mA	1,2,3	01	2.4		V
Output short circuit current 1/	I _{OS}	$V_{CC} = +5.25 \text{ V}$, Output high	1,2,3	01	-30	-130	mA
Reference voltage	V_{REF}	V _{REF} output	1,2,3	01	1.18	1.26	V
Reference regulation	ΔV_{REF}	1200 Ω, V _{REF} to GND, 0 to 1 mA load	1,2,3	01	-6.3	6.3	mV
Digital supply current, static	Icc	V _{CC} = +5.25 V, 1.1 MHz FS input, one LSTTL load, dc	1	01		150	mA
Statio		input, one ESTTE load, do	2,3			200	
Analog supply current,	I _{EE}	V _{EE} = -5.5 V, 1.1 MHz FS	1	01		290	mA
static		input, one LSTTL load, dc input, output codes = low	2,3	1		340	
Input amplifier frequency		Full scale, 20 MHz input signal	4	01	-3.4	-1.0	dB
response			5,6]	-4.0	-1.0	
Gain error	GE	Zero to full scale	1,2,3	01	-1.0	+1.0	%
Bipolar offset error	V _{OS1}	Midscale input	1	01	-5.0	+5.0	LSB
_			2,3	<u> </u>	-6.0	+6.0	
Unipolar offset error	V _{OS2}	Lowscale input	1	01	-5.0	+5.0	LSB
_			2,3	<u> </u>	-6.0	+6.0	
Signal-to-noise ratio rms signal/rms noise and	SNR	1.1 MHz input	4	01	45		dB
distortion			5,6		43		
		9.7 MHz input	4		32		
		8.1 MHz input	5,6		32		

^{1/} Parameter shall be tested as part of device characterization and after design and process changes. Parameter shall be guaranteed to the limits specified in table I for all lots not specifically tested.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-88776
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL C	SHEET 6

Case outline X.

Inches	mm
.010	0.25
.018	0.46
.030	0.76
.100	2.54
.185	4.70
.250	6.35
.295	7.49
.600	15.24
.795	20.20
1.370	34.80

NOTES:

- 1. Dimensions are in inches.
- 2. Metric equivalents are given for general information only.
- 3. Unless otherwise specified, tolerance is $\pm .005$ (0.13 mm).
- 4. Standoffs are optional at discretion of the manufacturer.

FIGURE 1. Case outline(s).

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-88776
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL C	SHEET 7

Devic	e type	01
Case outline		X
Terminal		Function
number	symbol	
1	REF	Refrerence output
2	RANGE	Gain adjust input
3	R _{BOT}	Test point
4	VEE	Negative supply voltage
5	NMINV	Not most sigificant bit invert
6	Vcc	Positive supply voltage
7	FS	Full scale low, overflow detector
8	ŌĒ	Output enable
9	D1 (MSB)	Data bit 1
10	D2	Data bit 2
11	D3	Data bit 3
12	D4	Data bit 4
13	D5	Data bit 5
14	D6	Data bit 6
15	D7	Data bit 7
16	D8 (LSB)	Data bit 8
17	ZS	Zero scale, underflow detector
18	D _{GND}	Digital ground
19	CONV	Convert
20	NLINV	Not least significant bits invert
21	Aout	Test point (amplifier output)
22	A _{GND}	Analog ground
23	A _{IN}	Analog signal input
24	OFFSET	Offset adjust

FIGURE 2. <u>Terminal connections</u>.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-88776
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL C	SHEET 8

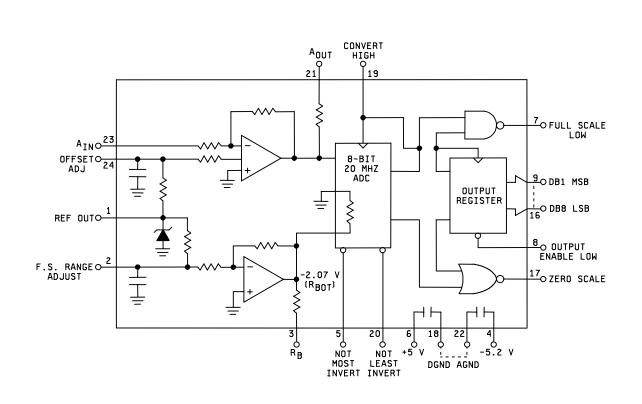
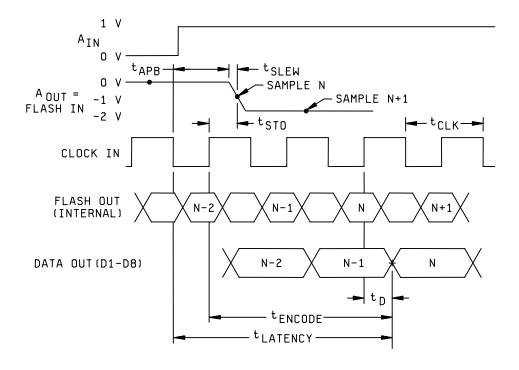


FIGURE 3. Block diagram.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-88776
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL C	SHEET 9

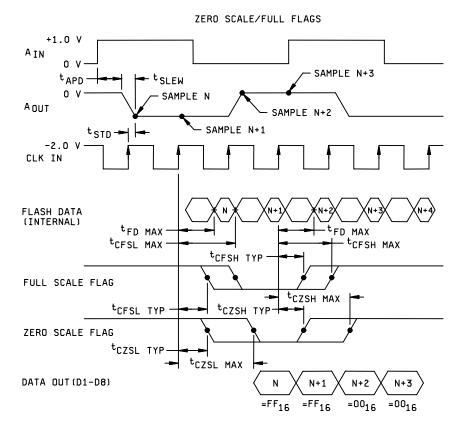

	Binary		Two's compler	ment
Input voltage	True	Inverted	True	Inverted
code center in unipolar mode	NMINV-1 NLINV-1	0 0	0 1	1 0
0.0000 +0.0039 * * +0.4960 +0.5000	00000000 00000001 * * * 01111111 10000000	11111111 11111110 * * * 10000000 01111111	10000000 10000001 * * * 11111111 00000000	01111111 01111110 * * * 00000000 11111111
*	*	*	*	*
+0.9920 +0.9960	11111110 11111111	00000001 00000000	01111110 01111111	10000001 10000000

NOTE: Input voltages are at code centers and buffer amplifier offset voltage is nulled.

FIGURE 4. Output coding table.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-88776
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		C	10

OUTPUT CODING



NOTES:

- 1. Amplifier propagation delay $(t_{APD}) = 30$ ns typically.
- 2. Amplifier slewing time $(t_{SLEW}) = 5$ ns typically.
- 3. One convert clock cycle (t_{CLK}) = 50 ns for (20 MHz sampling).
- 4. $(t_{LATENCY}) = 2(t_{CLK}) + t_D t_{STO} + t_{APD} + t_{SLEW} = 140 \text{ ns.}$

FIGURE 5. Timing diagram(s).

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-88776
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		C	11

NOTES:

- 1. $t_{FD}MAX = Internal flash data delay = 35 ns maximum.$
- 2. $t_{CFSL} = Clock to \overline{FS}$ flag asserted (low) = 25 ns typically.
- 3. t_{CZSH} = Clock to ZS flag asserted (high) = 29 ns typically.
- 4. t_{OVFSL} = Overvoltage into \overline{FS} (low) = 100 ns typically.
- 5. t_{UVZSH} = Undervoltage to ZS (HIGH) = 105 ns typically.

FIGURE 5. Timing diagram(s) - Continued.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-88776
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		C	12

TABLE II. Electrical test requirements.

MIL-PRF-38534 test requirements	Subgroups (in accordance with MIL-PRF-38534, group A test table)
Interim electrical parameters	1
Final electrical parameters	1*,2,3,4,5,6,7
Group A test requirements	1,2,3,4,5,6,7,8,9,10,11
Group C end-point electrical parameters	1,2,3,4,9
End-point electrical parameters for Radiation Hardness Assurance (RHA) devices	Not applicable

^{*} PDA applies to subgroup 1.

- 4.3 <u>Conformance and periodic inspections</u>. Conformance inspection (CI) and periodic inspection (PI) shall be in accordance with MIL-PRF-38534 and as specified herein.
 - 4.3.1 Group A inspection (CI). Group A inspection shall be in accordance with MIL-PRF-38534 and as follows:
 - a. Tests shall be as specified in table II herein.
 - b. Subgroups 7 and 8 tests shall be sufficient to verify the output coding table.
 - c. Subgroups 9, 10, and 11 shall be tested as part of device initial characterization and after design and process changes. Parameters shall be guaranteed to the limits specified in table I for all lots not specifically tested.
 - 4.3.2 Group B inspection (PI). Group B inspection shall be in accordance with MIL-PRF-38534.
 - 4.3.3 Group C inspection (PI). Group C inspection shall be in accordance with MIL-PRF-38534 and as follows:
 - a. End-point electrical parameters shall be as specified in table II herein.
 - b. Steady-state life test, method 1005 of MIL-STD-883.
 - (1) Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to either DSCC-VA or the acquiring activity upon request. Also, the test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883.
 - (2) T_A as specified in accordance with table I of method 1005 of MIL-STD-883.
 - (3) Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.
 - 4.3.4 Group D inspection (PI). Group D inspection shall be in accordance with MIL-PRF-38534.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-88776
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL C	SHEET 13

- 4.3.5 Radiation Hardness Assurance (RHA) inspection. RHA inspection is not currently applicable to this drawing.
- 5. PACKAGING
- 5.1 Packaging requirements. The requirements for packaging shall be in accordance with MIL-PRF-38534.
- 6. NOTES
- 6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes.
- 6.2 <u>Replaceability</u>. Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing.
- 6.3 <u>Configuration control of SMD's</u>. All proposed changes to existing SMD's will be coordinated as specified in MIL-PRF-38534.
- 6.4 <u>Record of users</u>. Military and industrial users shall inform Defense Supply Center Columbus when a system application requires configuration control and the applicable SMD. DSCC will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronic devices (FSC 5962) should contact DSCC-VA, telephone (614) 692-0544.
- 6.5 <u>Comments</u>. Comments on this drawing should be directed to DSCC-VA, Columbus, Ohio 43216-5000, or telephone (614) 692-1081.
- 6.6 <u>Sources of supply</u>. Sources of supply are listed in MIL-HDBK-103 and QML-38534. The vendors listed in MIL-HDBK-103 and QML-38534 have submitted a certificate of compliance (see 3.7 herein) to DSCC-VA and have agreed to this drawing.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-88776
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		C	14

STANDARD MICROCIRCUIT DRAWING BULLETIN

DATE: 04-01-20

Approved sources of supply for SMD 5962-88776 are listed below for immediate acquisition information only and shall be added to MIL-HDBK-103 and QML-38534 during the next revisions. MIL-HDBK-103 and QML-38534 will be revised to include the addition or deletion of sources. The vendors listed below have agreed to this drawing and a certificate of compliance has been submitted to and accepted by DSCC-VA. This bulletin is superseded by the next dated revisions of MIL-HDBK-103 and QML-38534.

Standard	Vendor	Vendor
microcircuit drawin	CAGE	similar
PIN <u>1</u> /	number	PIN <u>2</u> /
5962-8877601XA 5962-8877601XA 5962-8877601XC 5962-8877601XC	27851 3/	HS1068B SP-2069 HS1068B SP-2069

- 1/ The lead finish shown for each PIN representing a hermetic package is the most readily available from the manufacturer listed for that part. If the desired lead finish is not listed contact the Vendor to determine its availability.
- <u>2</u>/ <u>Caution</u>. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing.
- 3/ This device is no longer available.

Vendor CAGEVendor namenumberand address

27851 SatCon Electronics 165 Cedar Hill Street Marlborough, MA 01752

The information contained herein is disseminated for convenience only and the Government assumes no liability whatsoever for any inaccuracies in the information bulletin.